

Trabalhos científicos • Apresentações artísticas

e culturais • Debates • Minicursos e Palestras

Unimontes
Enerolate traded it forms then
APOIO:

FAPEMIG

24 a 27 setembro Campus Universitário Professor Darcy Ribeiro

www.fepeg.unimontes.br

Cinética de degradação da fibra em detergente neutro em variedades de cana-de-açúcar *in natura* e ensilada

Luiz Henrique Tolentino Santos, Sidnei Tavares dos Reis, Jaime Emerson Laranjeira Spinola, Vicente Ribeiro Rocha Júnior, Maria Catiane Araujo Silva, Annamaria de Oliveira Siqueira, Leonardo Felipe Lima Santos

Introdução

Quando se analisa as forrageiras tropicais, a cana-de-açúcar se destaca por apresentar uma elevada produtividade (80 a 120 t ha-1 de matéria verde) e manutenção de seus valores nutritivos com qualidade boa na época seca do ano, o que não ocorre com as demais forrageiras tropicais [1].

Algumas variedades de cana-de-açúcar apresentam limitações de consumo, provocadas pelas características de sua fração fibrosa, porem existe variedades de cana-de-açúcar com características melhoradas. Assim torna-se importante conhecer a qualidade de diferentes variedades em termos de conteúdo de fibra e da cinética de degradação da FDN, para selecionar aquelas variedades mais promissoras e, posteriormente, confrontá-las em estudos sobre características químicas, bromatológicas, degradabilidade e testes de desempenho [2].

Objetivou-se determinar a degradabilidade *in situ* da fibra em detergente neutro em quatro variedades de cana-de-açúcar in natura e na forma de silagem, submetidas às condições edafoclimáticas do norte de Minas Gerais.

Material e métodos

O experimento foi realizado na fazenda experimental da UNIMONTES em Janaúba-MG, em delineamento inteiramente casualisado esquema fatorial 4x2 sendo quatro variedades de cana-de-açucar (RB 85-5536, RB 76-5418, SP 80-1842 e SP 80-1816) em duas formas (in natura e ensilada). As análises laboratoriais foram conduzidas no laboratório de análise de alimentos, Campus Avançado de Janaúba - MG. Realizou-se um ensaio de digestibilidade segundo metodologia de ORSKOV & MCDONALD [3], por meio da técnica da degradabilidade in situ. As amostras de cana-de-açúcar in natura e na forma de silagem de cada variedade foram colocadas nos sacos, em quantidades de matéria seca suficientes para manter a relação proposta por [4,5]. As amostras foram depositadas na região do saco ventral do rúmen por 0, 6, 12, 24, 48, 72 e 96 horas, sendo colocados em ordem inversa. Após o término do período de incubação, as sacolas contendo as amostras foram retiradas do rúmen, abertas, lavadas e colocados em estufas a 55°C durante 72 horas e após, resfriado em dessecador e pesados [6]. Os sacos referentes ao tempo zero, para determinar a fração prontamente solúvel, foram introduzidos na massa ruminal e imediatamente retirados, recebendo, então, o mesmo tratamento destinado aos demais tempos. Os alimentos e os resíduos remanescentes nos sacos, recolhidos no rúmen foram analisados quanto aos teores de fibra em detergente neutro (FDN). A FDN foi analisada segundo os métodos propostos por [7]. A porcentagem de degradação foi calculada pela proporção de alimentos remanescentes nos sacos após a incubação ruminal. A degradabilidade da FDN foi estimada utilizando-se o modelo de [8]. Após os ajustes da equação de degradação da FDN, procedeu-se à padronização de frações, conforme proposto por [9]. As variáveis foram analisadas usando o procedimento GLM do programa estatístico SAS.

Resultados e Discussão

As variedades RB 85-5536 e SP 80-1842 da fração insolúvel potencialmente degradável (b) apresentaram valores na degradação da FDN superior às demais (P<0,05) e iguais entre si. Sendo a variedade SP 80-1842 com maior valor entre as demais. Valores observados nesta pesquisa variando entre as variedades foram 22,93 a 55,54% (b). Pesquisas com gramíneas mostram resultados variados no teor de fração (b), como aos reportados por Romão [5], de média 38,4%, possivelmente devido característica particular de cada variedade e diferenças metodológicas na condução das pesquisas. Quanto maior o valor da degradação da fração (b) melhor será o aproveitamento dos seus constituintes nutricionais (Tabela 1).

A taxa fracional de degradação (C) a variedade RB 76-5418 apresentou o valor superior às demais (P<0,05). Porem, as demais apresentaram teores da taxa fracional de degradação (C) da FDN iguais estatisticamente (P>0,05). Nesta pesquisa observamos valores variando de 0,03 a 0,06 da fração (C), com a redução da fração C dos carboidratos em

Trabalhos científicos • Apresentações artísticas

e culturais • Debates • Minicursos e Palestras

FAPEMIG

www.fepeg.unimontes.br

volumosos melhora o aproveitamento da fração fibrosa, conseqüentemente aumenta a disponibilidade de energia da cana-de-açúcar para o ruminante.

A fração insolúvel potencialmente degradável padronizada (Bp) da FDN apresentou valores e efeitos de significância como já citado para a fração (B). Nesta pesquisa observamos valores de (Bp) variando de 22,93 a 55,54%. Pesquisas com gramíneas mostram resultados variados da fração (Bp) da FDN, como aos reportados por Romão [5], de 38,4%. Estas variações devido aos tratamentos feitos em cada pesquisa e as particularidades das variedades. A fração indegradável (FI), segue os mesmos resultados que a (IP) fração indegradável potencial.

Os resultados de DP desta respectiva pesquisa mostra que o alimento avaliado tem um bom aproveitamento dos seus nutrientes, isso confirmado por Romão [5], relatando que quanto maior o DP da cana, melhor aproveitamento dos seus nutriente. A variedade RB 76-5418 na fração DP apresentou valor mais elevado que as demais (P<0,05), enquanto a SP 80-1842 com menor valor entra as variedades.

As variedades RB 85-5536 e SP 80-1842 apresentaram valores superiores de degradabilidade efetiva (DE) ás demais (P<0,05), porem, a que apresentou menor valor foi a RB 76-5418 (Tabela 1).

A variedade RB 76-5418 na forma in natura apresentou valores da fração (C) superior às demais (P<0,05), porém, as variedades SP 80-1842 e SP 80-1816 foram iguais e superiores as demais, isso na forma ensilada (P>0,05) (Tabela 2). Quando analisou taxa de degradação (c) da fibra em detergente neutro nas formas silagem e *in natura*, foram observadas diferenças significativas (P>0,05), onde que a forma *in natura* apresentou uma melhor degradabilidade em comparação a cana ensilada (Tabela 3).

Na Figura 1 ilustra a curva de desaparecimento da FDN da MS da cana-de-açúcar em função do tempo de incubação que nos primeiros momentos mostrou mais acelerado, mas com o passar do tempo se estabilizou. Quando chegou no temo de 72 horas, todas as amostras já tinha se estabilizado. Destacamos para a variedade RB 76-5418 na forma in natura que se estabilizou primeiro e com uma baixa degradabilidade da FDN efeito semelhante também para a forma ensilada. Já a variedade SP 80-1842 ensilada e SP 85-5536 que apresentaram melhores desempenhos nesta variável. Destacamos também que em todas as variedades a forma ensilada sobressaiu da in natura exceto a na variedade SP 80-1816.

Conclusões

Em função dos resultados obtidos recomenda-se a variedades (SP80-1842 e RB 85-5536) na forma in natura.

Agradecimentos

A Fapemig e a Cnpq pelo apoio financeiro e concessão de bolsa. A Unimontes pela infraestrutura ao projeto de pesquisa.

Referências

- [1] MAGALHAES, A. L. R. et al. Cana-de-açúcar em substituição à silagem de milho em dietas para vacas em lactação: parâmetros digestivos e ruminais. Revista Brasileira de Zootecnia, v. 35, n.2, p. 591 599, 2006.
- [2] CRUZ, P. G.; FIGUEIREDO, M. P.; PEREIRA, L. G. R.; BERGAMASCHI, K. B.; RODRIGUES, C. S.; RECH, C. L. S. Fracionamento e cinética da fermentação ruminal in vitro dos carboidratos de cinco variedades de cana-de-açúcar. Ci. Anim. Bras., Goiánia, v. 11, n. 4, p. 784-793, out./dez. 2010.
- [3] ORSKOV, E.R.; McDONALD, I. The estimation of gedradability in the rúmen form incubation measurement weighted according to rate of passage. Journal of Agricultural Science, Cambridge, v.92, n.1, p.499-508, Mar. 1979
- [4] NOCEK, J.E. In situ and other methods to estimate ruminal protein and energy digestibility: a review. Journal of Dairy Science, Champaigne, v.71, n.8, p.2051-2069, Ago. 1988.
- [5] ROMÃO, C. O.; CARVALHO, G. G. P.; LEITE, V. M.; SANTOS A.S., CHAGAS, D. M. T., RIBEIRO, O. L.; PINTO, L. F. B., OLIVEIRA, R.L. Fracionamento de carboidratos e degradabilidade ruminal da cana-de-açúcar tratada com óxido de cálcio. Arq. Bras. Med. Vet. Zootec., v.65, n.2, p.537-546, 2013.
- [6] SILVA, D.J.; QUEIROZ, A.C. Análises de alimentos (métodos químicos e biológicos). Editora UFV, Viçosa, MG, 3.ed., p.235, 2002.
- [7] VAN SOEST, P.J. Development of a comphrehensive system of feed analysis and its applications to forages. Journal of Animal Science, v.26, p.119-128, 1967.
- [8] MERTENS, D.R.; LOFTEN, J.R. the effects of starch on forage fiber digestion kinetics in vitro. J. Dairy Sci., v.63, p.1437-1446, 1980.
- [9] WALDO, D.R.; SMITH, L.W.; COX, E.L. Model f cellulose disappearance from the rumen. J. Dairy Sci., v.55, p.125-129, 1972.

Trabalhos científicos • Apresentações artísticas

e culturais • Debates • Minicursos e Palestras

REALIZAÇÃO:

FAPEMIG

www.fepeg.unimontes.br

TABELA 10- Parâmetros da degradação ruminal da fibra em detergente neutro (FDN).

Fracionamento	Variedades			CV 0/	
	RB85-5536	RB76-5418	SP80-1842	SP80-1816	CV %
В	51,87 a	22,93 b	55,54 a	37,10 b	25,34
C	0,03 b	0,06 a	0,04 b	0,04 b	14,20
BP	51,87 a	22,93 b	55,54 a	37,10 b	25,34
IP	48,13 b	77,08 a	44,46 b	62,90 a	18,24
FI	48,13 b	77,08 a	44,46 b	62,90 a	18,24
DP	48,13 b	77,08 a	44,46 b	62,90 a	18,24
DE	18,07 a	9,86 b	17,75 a	13,57 b	18,58

B = fração insolúvel potencialmente degradável (%); C = taxa fracional de degradação (h-1); Bp = fração insolúvel potencialmente degradável padronizada (%); Ip = fração indegradável (FI); degradabilidade potencial (DP); efetiva (DE) e (CV %) coeficiente de variação. Médias seguidas de letras distintas na linha diferem entre si pelo teste de Sott-Knott (P<0,05).

TABELA 2- Taxa de degradação (c) da fibra em detergente neutro (FDN) nas formas e variedades de cana-de-açúcar.

WADIEDADEC	FORMA DE PROCESSAMENTO			
VARIEDADES ——	SILAGEM	IN NATURA		
RB 85-5536	0,02 Bb	0,04 Ab		
RB 76-5418	0,03 Bb	0,09 Aa		
SP 80-1842	0,04 Aa	0,04 Ab		
SP 80-1816	0,04 Aa	0,04 Ab		
CV%	14,20			

Médias seguidas de letras maiúsculas na linha e minúsculas na coluna diferem entre si pelo teste de Scott-Knott (P<0,05).

TABELA 3- Taxa de degradação (c) da fibra em detergente neutro (FDN) nas formas silagem e *in natura* em cana-deaçúcar.

Forma	Taxa de degradação (c)	
SILAGEM	0,03 b	
IN NATURA	0,05 a	
CV%	14,20	

⁽CV %) coeficiente de variação. Médias seguidas de letras distintas na coluna são diferentes pelo teste de Scott-Knott (P<0,05).

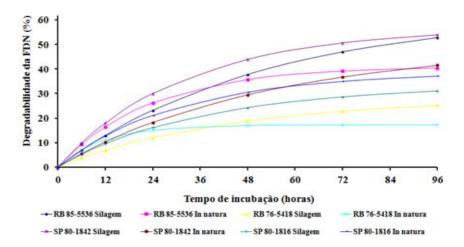


FIGURA 1. Curvas de desaparecimento da FDN, em função dos tempos de incubação da cana-de-açúcar nas diferentes variedades e formas.