

Trabalhos científicos • Apresentações artísticas

e culturais • Debates • Minicursos e Palestras

www.fepeg.unimontes.br

Perfil cromatográfico dos extratos brutos e partições das folhas e cascas de *Myracrodruon urundeuva* Fr. All com potencial para uso fitoterápico.

Ariadna Conceição dos Santos, Bárbara Caroline Ferreira Mota, Vanessa de Andrade Royo, Afrânio Farias de Melo Júnior, Elytania Veiga Menezes, Rosangela da Silva Laurentiz

Introdução

Myracrodruonu undeuva Fr. All, conhecida popularmente como aroeira-do-cerrado, aroeira-preta dentre outros [1] é uma espécie arbórea, típica do cerrado cuja casca possui propriedades de alto poder medicinal, sendo utilizada no tratamento de lesões e úlceras de pele e mucosas, contra infecções do sistema respiratório, digestivo e geniturinário [2]. O objetivo do presente trabalho foi avaliar o perfil cromatográfico do extrato bruto hidroalcoólico e partições de folhas e cascas de aroeira-preta (Myracrodruon urundeuva Fr. All.).

Materiais e Métodos

As folhas e cascas de M. urundeuva foram coletadas em Glaucilândia (Minas Gerais, Brasil), em 10 de dezembro de 2010, de indivíduos adultos, aleatoriamente. A exsicata confeccionada foi identificada pelo Prof. Dr. Rubem Manoel dos Santos e depositada no Herbário Montes Claros (Unimontes) com registro no. 3534. O material foi seco à sombra por 96 horas. Foram então pulverizados e submetidos à maceração exaustiva com solução hidroalcoólica (etanol 7:3) a temperatura ambiente por 28 dias com filtração a cada sete dias e agitados ao acaso, os extratos foram filtrados, estocado em sacos de papel e refrigerado a - 10°C. Obtenção dos extratos: Cada grama de extrato bruto seco foi tratado com duas porções de 30 mL de hexano, diclorometano, acetato de etila e isobutanol, respectivamente. Os extratos obtidos foram secos em estufa de circulação forçada de ar (40°C ± 5) até completa evaporação do solvente. Análise do perfil cromatográfico: Cromatográfia em Camada Delgada (CCD)- Foram utilizadas placas cromatográficas de sílica gel 60 G F₂₅₄ para o estudo dos extratos brutos e particionados de M. urundeuva. As fases móveis utilizadas foram: hexano/ acetato de etila(4:6) - extratos de diclorometano e isobutanólicos, hexano/acetato de etila (8:2) - extratos hexânicos e hexano/acetato de etila (1:1) - extratos acetato de etila. As placas foram reveladas em luz UV no comprimento de onda de 254 nm e em seguida com iodo metálico. Os fatores de retenção (Rf) das bandas foram calculados com a utilização da fórmula Rf = distância percorrida pela amostra/distância percorrida pela fase móvel [3]. Cromatografia líquida de alta eficiência (CLAE) -Os extratos particionados e solubilizados a 1 mg/mL foram analisados em um cromatógrafo líquido, marca Waters, equipado com injetor automático e detector de diodo. O método exploratório, baseado nas seguintes condições cromatográficas: coluna cromatográfica C18 (Phenomenex), 250 x 4,6 mm, 10 µm, modo de eluição isocrático, varredura em UV, volume de injeção de 10 μL, a vazão da fase móvel de 1,0 mL/min e a fase móvel composta por água: metanol (80:20) acidificada a 1% com ácido acético^[3].

Resultados e Discussão

No perfil cromatográfico observou-se grande semelhança entre os extratos das folhas e cascas de *Myracrodruon urundeuva*, principalmente nos compostos majoritários Tabela 1e 2. Análise cromatográfica é muito importante para avaliação da pureza de drogas vegetais mesmo quando os princípios ativos são desconhecidos, contanto que o preparo seja padronizado, os perfis não variam significativamente ^[3]. E para propor critérios de padronização de medicamentos fitoterápicos é indispensável conhecer a variabilidade química da espécie usada como matéria-prima ^[4]. Os extratos diclorometano e isobutanol do perfil cromatográfico da CCD e diclorometano e acetato de etila na CLAE das folhas e cascas, obtiveram respectivamente as seguintes semelhanças: a maioria dos compostos possui os mesmo fatores de retenção e devido a compostos químicos presentes, que em sua maioria apresentaram tempo de retenção e áreas próximas.

Conclusões

O perfil cromatográfico pode ser utilizado para verificar semelhanças entre os constituintes das folhas e cascas de *M. urundeuva*, para propor o uso das folhas como alternativa mais sustentável para uso medicinal dessa espécie.

Agradecimentos

À FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE MINAS GERAIS (FAPEMIG), Pró-Reitoria de Pesquisa da UNIVERSIDADE ESTADUAL DE MONTES CLAROS (UNIMONTES) e ao Banco do Nordeste do Brasil (BNB).

Referências

- [1] Instituto de Pesquisas e Estudos Florestais IPEF. Disponível em: http://www.ipef.br/identificacao/nativas/detalhes.asp?codigo=41. Acesso em: 10/06/2012.
- [2] Berger APA, Ranal M, Lopes SW, Dorneles MC, Santana DG, Pereira RS (2007). Emergência de plântulas de *Myracrodruonurundeuva* Allemão (Anacardiaceae) do Vale do Rio Araguari, MG. *RevBras de Bioci.* 5:1029-31.
- [3] Viana GSB, Matos FJA, Bandeira AM, Rao VS (1995). Aroeira-do-sertão: estudo botânico, farmacognóstico, químico e farmacológico. 2. ed. Fortaleza: Editora da EUFC, 164pp.
- [4] Yariwake JH, Lanças FM, Cappelaro EA, Vasconcelos EC, Tiberti LA, Pereira MAS, Franca SC (2005). Variabilidade sazonal de constituintes químicos (triterpenos, flavonóides e polifenóis) das folhas de *Maytenusaquifolium*Mart. (Celastraceae). *Braz J Pharmacognosy*. 15:162-168.

Tabela 1: Perfil cromatográfico dos extratos particionados de *M. urundeuva* por CCD e CLAE.

	CLAE				CCD							
Extrato	Número de compostos	Compostos majoritários	Tempo de retenção (min)	Área (%)	Fatores de Retenção							
EHF	7	I*	0,665	88,28	0,90	0,84	-	-	0,53	-	0,18	0,90
		I	2,122ª	0,15	0,82	0,72	0,67	0,56	0,33	0,27	-	0,08
	5	II*	2,704 ^b	37,68								
EDF		III*	3,122°	28,17								
		IV*	3,262 ^d	31,72								
		V	4,461 ^e	2,28								
	5	I	2,153 ^a	0,14	0,58	-	0,21					
		П*	2,753 ^b	28,12								
EAF		III*	3,18°	32,59								
		IV*	3,325 ^d	37,81								
		V	4,570 ^e	1,34								
		I	2,340	0,16	0,90	0,74						
		II*	3,004	34,48								
EIF	5	III*	3,503	49,69								
		IV*	3,713	13,90								
		V	5549	1,76								
		I	2,267	2,88	-	-	0,71	0,63	-	0,32	-	
		II*	2,834	67,86								
EHC	5	III*	3,396	26,33								
		IV	4,167	2,60								
		V	6,03	0,33								
		I*	2,606 ^f	52,36	0,82	0,72	0,67	0,56	-	0,27	0,15	0,08
		II*	3,075 ^g	41,80								
EDC	4	III	4,677 ^h	3,96								
		IV	5,368 ⁱ	1,88								
		I*	2,673 ^f	42,84	-	0,26	-					
			3,093 ^g	26,33		<u> </u>						
EAC	5	III*	3,547	17,71								
		IV	4,681 ^h	7,59								
		V	5,358 ⁱ	5,53								
		I	2,259	1,27	0,90	0,74						
EIC	4	II*	2,800	57,63	*							
LIC	٦.	III*	3,386	22,53								
		IV*	4,036	18,57								

^{*} Compostos majoritários. a-i (letras iguais): compostos com tempos de retenção próximos.

(-) Não identificado. EHI diclorometano cascas; EAI extrato isobutanol cascas.	F –extratohexano folhas; F F-extrato acetato de etila fo	EHC-extrato hexano casca lhas; EAC-extrato acetato	s; EDF-extrato diclorometar de etila cascas; EIF – extrato	no folhas; EDC-extrato isobutanol folhas; EIC-